功率—超声波
功率超声波运用

超声波湿法冶金运用:硫化铜精矿、钨、镍、钴、铝土矿、贵金属、铀等。功率超声波常常能弥补经典湿法冶金技术的不足,强化了浸出过程,减少了过程时间,是一种有效的方法。以前虽然超声波在实际中难以实现,普遍存在

  分散染料的粒度多种多样,在染浴中通常以晶体形式存在,粒度的分布随染料整理方式的不同而不同,为了获得所需要的粒度...

  超声波声波化学镀的特点、超声波在化学镀中的作用机理以及超声波对化学镀的沉积速度、镀层性能等方面的影响。    ...

  超声波加工(ultrasonic machining),起源于20世纪50年代初期,是指给工具或工件沿一定方向...

  超声波与水溶液间作用能够有效地改变溶液中分子问的相互作用力,从而改变溶液的微观结构。这对很多化工、冶金过程,如...

超声波氧化基本原理超声波对有机物的声化学氧化降解主要基于以下两个理论:(1) 空化理论;(2) 自由基理论。(1)...

超声波对污泥絮体尺寸的影响用超声波对活性污泥的物理、化学和生物特性分别进行了研究。采用的超声波频率是20 kHz,作用时间是20~120 min 不等,未处理以前污泥絮体的平均粒径是98.

超声波对酒的醇化 术超声波对化妆品的分散 超声波制药 超声波提取生物纳米

细胞破碎技术的基本概念及其基本方法,重点介绍了从超声波破碎仪及超声波破碎常见的问题与解决方法上介绍了超声波破碎法。超声波细胞破碎仪工作原理基于超声波在液体中的空化作用,换能器将电能量通过变幅杆在工具头

应用于生物发酵工程的超声波可分为功率超声波和检测超声波,功率超声波主要用于改进发酵工艺或改善发酵过程,其作用机制分为热作用、空化作用和机械传质作用,作用的强弱与超声波的频率及强度等有关。

功率超声-超声波应用领域

超声波焊头(horn)是所有超声波发射端的通称,是超声波焊接设备中不可缺少的部分。它的作用是将换能器产生的超声波耦合到被加工物体中.因其要传递超声波,故焊头一定要工作在谐振状态,

超声波的空化效应对液--液萃取、液--固提取等化工分离工艺都有加强的效应,这也正是超声可应用于中药提取中的原因。

超声加工技术是特种加工技术之一,往往能应用于传统加工难以完成的难加工材料上。 超声去除加工、超声表面光整加工、超声焊接加工、超声处理等超声加工技术。往能应用于传统加工难以完成的难加工材料上。 超声去除

  超声波金属焊接是一种特种链接设备,自1950年美国人发明改技术来,已在工业上广泛运用。  利用机械振动能量,在...

超声波缝纫机, 超声波无缝焊接 超声波压花机,超声波裥棉机,超声波分条机,超声波口罩机,超声波鞋垫机

超声波塑料焊接机的工作原理:当超声波作用于热塑性的塑料接触面时,会产生每秒几万次的高频振动,这种达到一定振幅...

超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。
国外在1960年开始应用超声波焊接技术优点:焊接时间短、焊接强度高、表面无损坏

 超声波清洗源于二十世纪六十年代,自超声波技术问世以来,科学家们发现:一定频率范围内的超声波,作用于液体介质里,可以达到清洗的作用。经过一段时间的研究和试验,不仅得到了满意的效果,而且发现其清洗效率极

  超声波发生器是功率超声核心作用是把市电转换成与超声波换能器相匹配的高频交流电信号,驱动超声波换能器工作。大功率...

超声波压电效应:  某些单晶材料的结构具有非对称特性,当这些材料受到外加应力作用而产生应变时,其内部晶格结构的...

功率超声换能器是功率超声产生的基础,功率超声中应用最广的换能器是压电换能器,尤其是夹心式纵向压电换能器。 换能器就是进行能量转换的器件,是将一种形式的能量转换为另一种形式的能量装置。目前广泛用于:超声

超声波 超声波发生器 数字超声波发生器 大功率超声波 超声波车削 超声波解堵 超声波采油 超声波提取 超声波冶金 超声波加工 超声波辅助加工 超声波,超声波发生器,超声波车削,超声波采油,超声波提取,

功率超声-超声波氧化

414
作者:张家港睿能科技有限公司来源:张家港睿能科技有限公司网址:http://www.sonicindustry.net

超声波氧化基本原理

超声波对有机物的声化学氧化降解主要基于以下两个理论:(1) 空化理论;(2) 自由基理论。

(1) 空化理论:

     超声波对有机污染物的降解不是声波的直接作用,因为超声波在液体中的波长远远大于分子尺寸,而是与液体产生空化泡的崩灭密切相关。由于空化作用,在空化核周围微小空间形成局部热点,其温度高达5000K,压力达5.065×107Pa,持续数秒之后,该热点随之冷却,冷却速率达到109K/s,并伴有强大的冲击波(对均相液体媒质)和时速达400km的射流(对非均相媒质)。这就为有机物的降解反应创造了一个极端的物理环境,可大大促进氧化还原反应,使一些需要在较高温度和压力等条件下的反应在常态下可顺利进行。

(2) 自由基理论:

在空化作用产生的高温高压下,水分子裂解产生·H以及·OH等自由基,同时,高压将在液体中产生强大的冲击波(均相)或是高速(﹥110m/s)射流(非均相)、次谐波及噪声等现象。产生的自由基与有机物发生氧化反应。

  同时在含有聚合物的多相体系中,由于空化泡崩灭时强大的流体力学剪切力,会使大分子主链上碳键产生断裂,也会产生自由基,引发各种反应。同时声波的机械效应(传声媒质的质点振动、加速度和声压等力学量)和热效应(声波转化而成)对有机物降解的贡献也不容忽视。

超声波氧化反应的特性:

  1.在常温常压下促进化学反应;

  2.由于热力学的原因大大缩短了反应的诱导期;

  3.无需某些普通的化学反应的苛刻条件;

  4.在某些反应中甚至可以改变反应历程,产生意想不到的反应产物。

超声波与其他技术联用降解有机物:

  尽管单独使用超声可简单、方便地降解水体中一系列机污染物,但该技术仍存在着降解效率低、反应时间长、能耗高等问题,尤其是针对极性、憎水性、难挥发性有机污染物而言。要使超声辐射成为一项具有工业前景的新型水处理技术,首先必须解决好上述问题。为了降低成本,提高难降解有机污染物的降解速率。

1. 超声与臭氧法联用

2. 超声与紫外光联合用

3. 超声与吸附联用技术

4. 超声与磁化学联用技术

5. 超声与生物联用技术

6. 超声与紫外光催化氧化法

7. 超声电解法

8. 超声H2O2催化氧化法

1. 超声与臭氧联用法:

   在超声各种水处理法组合的工艺中,超声与臭氧法是研究最多及最早的方法之一。

   超声强化臭氧氧化作用主要表现在两个方面:①促进臭氧的分解;在超声波作用下,臭氧分解产生具有更多更高活性的自由基如·OH等;②传质速率常数的增大;超声一方面可将臭氧气泡转变为“微气泡”,提高臭氧与水的接触面积,即增大表面积。另一方面,通过增加水的混合程度和紊动强度,降低液膜厚度,减少阻力,增大传质系数,从而提高臭氧的传质速率。

2.超声与紫外光联用:

    超声与紫外光联合技术对水中常见有机污染物有较好的处理效果,如苯酚、四氯化碳、三氯甲烷等,降解产物为CO2、H2O、Cl+或易被生物降解的短链脂肪酸,经联合技术工艺处理30min后,浓度为100.4mg/L的三氯甲烷溶液降解率达98%,12.1mg/L的四氯化碳溶液已不能检测出其成分,40min苯酚的降解率达99%。

3.超声与吸附联用技术:

  吸附法是常见的水处理技术,但吸附剂的再生一直未得到很好的解决。使用超声波可以对饱和的吸附剂进行脱附处理。

   在超声作用下,再生饱和酚的活性碳和高分子树脂,并取得良好的效果,认为超声加速脱附的原因是声空化引起的微射流强化了酚的孔扩散速度。

   施加超声波可以提高NKAⅡ树脂对苯酚的吸附量,而且通过超声空化作用强化了相间质量的传递过程,其扩散系数比常规下的扩散系数约大一个数量级,随着超声场的声强增加,扩散系数也增大。

4:超声磁化学联用技术:

   利用磁化学效应,有效地防止或减少HO·和H·的复合,提高HO·的浓度,大大强化了超声处理效果。

5. 超声与生物联用技术:

  对一些难降解的废水,可先经超声处理以提高其生化降解性,再用常规生化法去处理,既解决了单独使用超声成本高的问题,也解决了难生化处理的问题。具有互补性,有良好的工业前景。

6.超声与紫外光催化氧化法:

  光催化处理有机污染物是一种有效的方法,在TiO2作催化处理过程中,采用超声波的分散效应,使TiO2均匀分散,提高其催化活性。

  结果表明:三氯苯酚随声强、温度的增高降解率增大,处理效果与紫外光的传输方式、污染物的浓度无关。

7.超声电解法:

    电解法就是指大多数有机污染物在阳极氧化时可降解为CO2和H2O。然而用电解法处理有机废水时有机物在电极上被氧化或还原时,会在电极表面生成一层聚合物膜,从而改变电极表面性质导致电极活性下降和电耗增加等。利用超声波的空化效应,可使电极复活,增强反应物从液相主体向电极表面的传质过程,消除浓差极化等。

8.超声H2O2催化氧化法:

   在超声氧化过程中,超声起到反应物与催化剂的双重作用,作为反应物,超声可使有机分子分解,作为催化剂超声使H2O2分解生成有效的氧化自由基,如HO·和HOO·从而引导一系列的氧化降解反应,H2O2在反应中既是HO·来源,又是HO·的清除剂,因此H2O2的量必须保持最佳值。