功率—超声波

功率超声-超声波污泥处理

317
作者:张家港睿能科技有限公司来源:张家港睿能科技有限公司网址:http://wenku.baidu.com/view/973b3670a417866fb84a8e1e.html
文章附图

  工业化与城市化的快速发展导致了污水处理系统的污泥产量达到了不可管理的数量。污泥的管理是污水处理系统的主要问题,它占了系统运行总费用的60%,而且关于污泥处置的法律法规变得越来越严格。随着全球变暖和气候变化的加剧,来自废弃物处理领域的温室气体排放获得了更多的关注。

  污水厂主要分为两部分,即污水处理和污泥处理。根据我国现行做法,污水处理厂一般要包含生物处理工艺。这步工艺的目的是通过微生物的生命活动实现对污染物的降解和去除,达标的上清液经消毒后排放,同时,形成的污泥进入污泥处理系统。从消除污染物角度看,只有对污泥也进行了彻底的处理后,污水处理的目的才真正达到,否则只能看作是污染从液相到固相(或半固相)的转化。由于各种原因,我国现有许多污水厂对污泥的处理不象对污水处理那样重视,致使有的地方污泥处理成为污水厂运行的头号难题,甚至导致污水厂成为新的大污染源。为解决污泥污染问题,人们进行了各种相关研究。本文就超声波处理剩余污泥技术进行一些讲述。

  超声波处理剩余污泥减量技术在国外具有很多工程实例,工程实例以欧洲居多,其中德国居首位,日本、新加坡、美国、加拿大也有部分工程实例。在国内研究试验也非常多,但大多是院校的研究课题,其中杨顺生教授的超声波强化生物除磷脱氮技术在工程得到实际应用。通过本人对之前超声波在污泥应用了解,以及一些论文的阅读,对超声波在污泥方面进行一些简单的总结。

超声波技术解读:

1、超声化学(简称声化学)是一门新兴的交叉学科,主要是利用超声波来加速化学反应,提高化学反应产率。声化学反应是通过声空化过程实现的。声空化把声场能量集中起来,然后伴随空化泡崩溃而在极小的空间内将其释放出来,使之在正常温度与压力下的液体环境中产生异乎寻常的高温(高于5000K)和高压(高于5X107Pa),形成“热点”,从而开辟化学反应通道,增强化学反应速率。

2、污泥的超声波破解机理是:

(a)水的机械剪切力;

(b)在超声辐射下产生的OH、H、N和O等自由基的氧化作用;

(c)污泥中挥发性疏水物质的热分解;

(d)活性污泥破解过程中温度的升高。

3、超声波处理中产生的空穴导致了大量微气泡的破裂,使得气泡周围的液相中产生了巨大的机械剪切力。气泡破裂所产生的高温使水分解为性质活跃的氢离子和氢氧自由基,在低温区域这些粒子会重新结合成过氧化氢和氢气。由于挥发性疏水物质在污泥中的含量非常低,因此其作用也常可忽略。考虑到温度对于溶解的影响,污泥在高温下的溶解速度非常缓慢。因此,我们可以认为,污泥的破解主要通过两个途径实现,水的机械剪切力和氢氧自由基的氧化作用。

  利用超声波技术处理污泥,其原理是选择一定频率和振幅的超声波,利用其在液体中产生的“空穴”(cavitation)作用,形成极端的物理和力学条件,局部可达摄氏5000度高温,500帕高压,以及剪切力。这就是空穴“内爆”(implosion)产生的所谓“热点”(hot spot),将微生物细胞壁击破,同时释放出酶。酶的作用使其余未被击破的微生物细胞失去对污泥罐中发酵环境的适应能力,迅速成为厌氧微生物的营养物而被消耗,从而突破瓶颈,大大加速发酵过程。

超声波对污泥絮体尺寸的影响

超声波对活性污泥超声波对不同细菌的影响

   在0.33 w/mL 声能密度下, 经40 min超声波处理后,异养菌减少了82 %,而大肠杆菌减少了99 %以上,并且溶解性COD 经60 min作用后提高了12 倍;而在0.11 w/mL 声能密度下,作用时间较短时, 异养菌和大肠杆菌变化不大, 只有在60 min以上才有明显减少,而且不管作用时间长短,溶解性COD 几乎保持不变,这种现象揭示在较高声能密度作用下,超声波可以把细菌分解,并使相当一部分固态COD 转变为溶解态。同时, 在0.11 w/mL和0.33 w/mL 之间存在一个阈值,超过此阈值,细菌的分解才会发生。

超声波分解污泥温度上升的现象  

    声能密度为0.44 w/mL 时,2 min 内污泥温度超过了55 ℃。为了考察温度对污泥分解的影响,他们把反应器的温度控制在15 ℃左右,实验结果显示声能密度为0.11 w/mL 时,没有出现固态COD 转变为溶解状态;如果不进行温度控制,大约有2% 固态COD 转变为溶解态。这种效应在声能密度为0.33 w/mL 时更为明显。为此他们考虑了究竟是超声波还是超声波引起的热效应对溶解性COD 释放的作用。结果表明单独在温度高的情况下,不足以破坏絮体结构,所以他们认为超声空化和由此引起的温度上升对于污泥分解是同样重要的。

   目前,超声波应用于污泥处理及减量存在的主要问题是超声处理运行参数优化、超声效率有待提高以及超声反应器的合理设计等。而且在进一步研究中应注意与污水处理工艺的合理组合,这样才能发挥超声波的特点,并为其在实际工程的应用打下基础。


功率超声波运用

超声波湿法冶金运用:硫化铜精矿、钨、镍、钴、铝土矿、贵金属、铀等。功率超声波常常能弥补经典湿法冶金技术的不足,强化了浸出过程,减少了过程时间,是一种有效的方法。以前虽然超声波在实际中难以实现,普遍存在

  分散染料的粒度多种多样,在染浴中通常以晶体形式存在,粒度的分布随染料整理方式的不同而不同,为了获得所需要的粒度...

  超声波声波化学镀的特点、超声波在化学镀中的作用机理以及超声波对化学镀的沉积速度、镀层性能等方面的影响。    ...

  超声波加工(ultrasonic machining),起源于20世纪50年代初期,是指给工具或工件沿一定方向...

  超声波与水溶液间作用能够有效地改变溶液中分子问的相互作用力,从而改变溶液的微观结构。这对很多化工、冶金过程,如...

超声波氧化基本原理超声波对有机物的声化学氧化降解主要基于以下两个理论:(1) 空化理论;(2) 自由基理论。(1)...

超声波对污泥絮体尺寸的影响用超声波对活性污泥的物理、化学和生物特性分别进行了研究。采用的超声波频率是20 kHz,作用时间是20~120 min 不等,未处理以前污泥絮体的平均粒径是98.

超声波对酒的醇化 术超声波对化妆品的分散 超声波制药 超声波提取生物纳米

细胞破碎技术的基本概念及其基本方法,重点介绍了从超声波破碎仪及超声波破碎常见的问题与解决方法上介绍了超声波破碎法。超声波细胞破碎仪工作原理基于超声波在液体中的空化作用,换能器将电能量通过变幅杆在工具头

应用于生物发酵工程的超声波可分为功率超声波和检测超声波,功率超声波主要用于改进发酵工艺或改善发酵过程,其作用机制分为热作用、空化作用和机械传质作用,作用的强弱与超声波的频率及强度等有关。

功率超声-超声波应用领域

超声波焊头(horn)是所有超声波发射端的通称,是超声波焊接设备中不可缺少的部分。它的作用是将换能器产生的超声波耦合到被加工物体中.因其要传递超声波,故焊头一定要工作在谐振状态,

超声波的空化效应对液--液萃取、液--固提取等化工分离工艺都有加强的效应,这也正是超声可应用于中药提取中的原因。

超声加工技术是特种加工技术之一,往往能应用于传统加工难以完成的难加工材料上。 超声去除加工、超声表面光整加工、超声焊接加工、超声处理等超声加工技术。往能应用于传统加工难以完成的难加工材料上。 超声去除

  超声波金属焊接是一种特种链接设备,自1950年美国人发明改技术来,已在工业上广泛运用。  利用机械振动能量,在...

超声波缝纫机, 超声波无缝焊接 超声波压花机,超声波裥棉机,超声波分条机,超声波口罩机,超声波鞋垫机

超声波塑料焊接机的工作原理:当超声波作用于热塑性的塑料接触面时,会产生每秒几万次的高频振动,这种达到一定振幅...

超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。
国外在1960年开始应用超声波焊接技术优点:焊接时间短、焊接强度高、表面无损坏

 超声波清洗源于二十世纪六十年代,自超声波技术问世以来,科学家们发现:一定频率范围内的超声波,作用于液体介质里,可以达到清洗的作用。经过一段时间的研究和试验,不仅得到了满意的效果,而且发现其清洗效率极

  超声波发生器是功率超声核心作用是把市电转换成与超声波换能器相匹配的高频交流电信号,驱动超声波换能器工作。大功率...

超声波压电效应:  某些单晶材料的结构具有非对称特性,当这些材料受到外加应力作用而产生应变时,其内部晶格结构的...

功率超声换能器是功率超声产生的基础,功率超声中应用最广的换能器是压电换能器,尤其是夹心式纵向压电换能器。 换能器就是进行能量转换的器件,是将一种形式的能量转换为另一种形式的能量装置。目前广泛用于:超声

超声波 超声波发生器 数字超声波发生器 大功率超声波 超声波车削 超声波解堵 超声波采油 超声波提取 超声波冶金 超声波加工 超声波辅助加工 超声波,超声波发生器,超声波车削,超声波采油,超声波提取,